Toxicological properties of the thiolated inorganic arsenic and arsenosugar metabolite thio-dimethylarsinic acid in human bladder cells.

نویسندگان

  • Franziska Ebert
  • Larissa Leffers
  • Till Weber
  • Svenia Berndt
  • Aswin Mangerich
  • Sascha Beneke
  • Alexander Bürkle
  • Tanja Schwerdtle
چکیده

Thio-dimethylarsinic acid (thio-DMA(V)) has recently been identified as human metabolite after exposure toward both the human carcinogen inorganic arsenic and arsenosugars, which are the major arsenical constituents of marine algae. This study aims to get further insight in the toxic modes of action of thio-DMA(V) in cultured human urothelial cells. Among others effects of thio-DMA(V) on eight cell death related endpoints, cell cycle distribution, genotoxicity, cellular bioavailability as well as for the first time its impact on DNA damage induced poly(ADP-ribosyl)ation were investigated and compared to effects induced by arsenite. The data indicate that thio-DMA(V) exerts its cellular toxicity in a similar or even lower concentration range, however most likely via different mechanisms, than arsenite. Most interestingly, thio-DMA(V) decreased damage-induced cellular poly(ADP-ribosyl)ation by 35,000-fold lower concentrations than arsenite. The inhibition of this essential DNA-damage induced and DNA-repair related signaling reaction might contribute to inorganic arsenic induced toxicity, at least in the bladder. Therefore, and also because thio-DMA(V) is to date by far the most toxic human metabolite identified after arsenosugar intake, thio-DMA(V) should contemporary be fully (also in vivo) toxicologically characterized, to assess risks to human health related to inorganic arsenic but especially arsenosugar dietary intake.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In vitro intestinal bioavailability of arsenosugar metabolites and presystemic metabolism of thio-dimethylarsinic acid in Caco-2 cells

Whereas inorganic arsenic is classified as a human carcinogen, risks to human health related to the presence of arsenosugars in marine food are still unclear. Since studies indicate that human inorganic arsenic metabolites contribute to inorganic arsenic induced carcinogenicity, a risk assessment for arsenosugars should also include a toxicological characterization of their respective metabolit...

متن کامل

In vitro toxicological characterization of two arsenosugars and their metabolites

SCOPE In their recently published Scientific Opinion on Arsenic in Food, the European Food Safety Authority concluded that a risk assessment for arsenosugars is currently not possible, largely because of the lack of relevant toxicological data. To address this issue, we carried out a toxicological in vitro characterization of two arsenosugars and six arsenosugar metabolites. METHODS AND RESUL...

متن کامل

Toxicological Characterization of the Inorganic and Organic Arsenic Metabolite Thio-DMAV in Cultured Human Lung Cells

We synthesised and toxicologically characterised the arsenic metabolite thiodimethylarsinic acid (thio-DMA(V)). Successful synthesis of highly pure thio-DMA(V) was confirmed by state-of-the-art analytical techniques including (1)H-NMR, HPLC-FTMS, and HPLC-ICPMS. Toxicological characterization was carried out in comparison to arsenite and its well-known trivalent and pentavalent methylated metab...

متن کامل

Interactive Effects of N6AMT1 and As3MT in Arsenic Biomethylation.

In humans, arsenic is primarily metabolized by arsenic (+3 oxidation state) methyltransferase (As3MT) to yield both trivalent and pentavalent methylated metabolites. We recently reported that the putative N-6 adenine-specific DNA methyltransferase 1 (N6AMT1) can biotransform monomethylarsonous acid (MMA(III)) to dimethylarsinic acid, conferring resistance of human cells to arsenic exposure. To ...

متن کامل

Urothelial cytotoxicity and regeneration induced by dimethylarsinic acid in rats.

Inorganic arsenic is a known human carcinogen of the skin and respiratory tract. Epidemiologic evidence indicates that it is also carcinogenic to the urinary bladder and other internal organs. Lack of an animal model has limited progress on understanding the mechanism of arsenic carcinogenesis. It was recently reported that high doses of an organic arsenical, dimethylarsinic acid (DMA), increas...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of trace elements in medicine and biology : organ of the Society for Minerals and Trace Elements

دوره 28 2  شماره 

صفحات  -

تاریخ انتشار 2014